The injectivity portion of combinatorial cuspidalization for FC-admissible outer automorphisms

Arata Minamide

RIMS, Kyoto University
July 6, 2021

§1 Introduction

K : an NF or an MLF $\hookrightarrow \bar{K}$: an alg closure of K
$G_{K} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{K} / K)$
(g, r) : a pair of integers ≥ 0 s.t. $2 g-2+r>0$
C : a hyperbolic curve ${ }_{K}$ of type (g, r) (g : the genus, r : the \sharp of cusps) $\pi_{1}((-))$: the étale π_{1} of $(-)$

§1 Introduction

K : an NF or an MLF $\hookrightarrow \bar{K}$: an alg closure of K
$G_{K} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{K} / K)$
(g, r) : a pair of integers ≥ 0 s.t. $2 g-2+r>0$
C : a hyperbolic curve ${ }_{K}$ of type (g, r) (g : the genus, r : the \sharp of cusps) $\pi_{1}((-))$: the étale π_{1} of $(-)$

Recall: The homotopy ext seq

$$
1 \longrightarrow \pi_{1}\left(C \times_{K} \bar{K}\right) \longrightarrow \pi_{1}(C) \longrightarrow G_{K} \longrightarrow 1
$$

induces an outer representation

$$
\rho: G_{K} \rightarrow \operatorname{Out}\left(\pi_{1}\left(C \times_{K} \bar{K}\right)\right)
$$

Fact (Bely̆̌, Voevodskiï, Matsumoto) If $r>0$, then ρ is injective.

Today,

Fact (Bely̆̌, Voevodskiï, Matsumoto) If $r>0$, then ρ is injective.

Today,

Theorem 1 (Hoshi-Mochizuki)
For any $(g, r), \quad \rho$ is injective.

Fact (Bely̆̆, Voevodskiĭ, Matsumoto) If $r>0$, then ρ is injective.

Today,

Theorem 1 (Hoshi-Mochizuki)
For any $(g, r), \rho$ is injective.

Method: combinatorial anabelian geometry

Fact (Belyĭ, Voevodskiĭ, Matsumoto)
If $r>0$, then ρ is injective.

Today,
Theorem 1 (Hoshi-Mochizuki)
For any $(g, r), \rho$ is injective.

Method: combinatorial anabelian geometry

- First, Mochizuki gave an alternative proof of Fact from the point of view of combinatorial anabelian geometry (cf. [CmbCsp]).

Fact (Belyĭ, Voevodskiĭ, Matsumoto)
If $r>0$, then ρ is injective.

Today,
Theorem 1 (Hoshi-Mochizuki)
For any $(g, r), \rho$ is injective.

Method: combinatorial anabelian geometry

- First, Mochizuki gave an alternative proof of Fact from the point of view of combinatorial anabelian geometry (cf. [CmbCsp]).
- Then Hoshi-Mochizuki proved Theorem 1 (cf. [NodNon]).

Idea

We know the injectivity of $G_{K} \rightarrow \operatorname{Out}\left(\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\}\right.$) (due to Bely̆). We want to show that $G_{K} \rightarrow \operatorname{Out}\left(\pi_{1}\left(C_{\bar{K}}\right)\right)$ for any C. However,

$$
\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\} \quad \cdots C_{\bar{K}}
$$

Idea

We know the injectivity of $G_{K} \rightarrow \operatorname{Out}\left(\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\}\right.$) (due to Belyı̆). We want to show that $G_{K} \rightarrow \operatorname{Out}\left(\pi_{1}\left(C_{\bar{K}}\right)\right)$ for any C. However,

$$
\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\} \quad \cdots C_{\bar{K}}
$$

Observe: $\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\}$ " \subseteq " the 3 rd conf. space $\left(C_{\bar{K}}\right)_{3}$ of $C_{\bar{K}}$.

$$
\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\} \cdots\left(C_{\bar{K}}\right)_{3} \cdots C_{\bar{K}}
$$

Idea

We know the injectivity of $G_{K} \rightarrow \operatorname{Out}\left(\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\}\right.$) (due to Bely̆). We want to show that $G_{K} \rightarrow \operatorname{Out}\left(\pi_{1}\left(C_{\bar{K}}\right)\right)$ for any C. However,

$$
\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\} \quad \cdots C_{\bar{K}}
$$

Observe: $\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\}$ " \subseteq " the 3 rd conf. space $\left(C_{\bar{K}}\right)_{3}$ of $C_{\bar{K}}$.

$$
\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\} \cdots\left(C_{\bar{K}}\right)_{3} \cdots C_{\bar{K}}
$$

On the other hand,

$$
\operatorname{Out}\left(\pi_{1}\left(\left(C_{\bar{K}}\right)_{3}\right)\right) \stackrel{?}{\bullet} \operatorname{Out}\left(\pi_{1}\left(\left(C_{\bar{K}}\right)_{2}\right)\right) \quad \stackrel{?}{ } \operatorname{Out}\left(\pi_{1}\left(C_{\bar{K}}\right)\right)
$$

Idea

We know the injectivity of $G_{K} \rightarrow \operatorname{Out}\left(\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\}\right.$) (due to Bely̆). We want to show that $G_{K} \rightarrow \operatorname{Out}\left(\pi_{1}\left(C_{\bar{K}}\right)\right)$ for any C. However,

$$
\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\} \quad \cdots C_{\bar{K}}
$$

Observe: $\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\}$ " \subseteq " the 3 rd conf. space $\left(C_{\bar{K}}\right)_{3}$ of $C_{\bar{K}}$.

$$
\mathbb{P}_{\bar{K}}^{1} \backslash\{0,1, \infty\} \cdots\left(C_{\bar{K}}\right)_{3} \cdots C_{\bar{K}}
$$

On the other hand,

$$
\operatorname{Out}\left(\pi_{1}\left(\left(C_{\bar{K}}\right)_{3}\right)\right) \stackrel{?}{\cdot} \operatorname{Out}\left(\pi_{1}\left(\left(C_{\bar{K}}\right)_{2}\right)\right) \stackrel{?}{ } \operatorname{Out}\left(\pi_{1}\left(C_{\bar{K}}\right)\right)
$$

\Longrightarrow We need to consider a certain subgp $\operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}\left(\left(C_{\bar{K}}\right)_{n}\right)\right)$.
k : an alg closed field of char 0
X : a hyperbolic curve $/ k$ of type (g, r)
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \cdots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}\right.$ if $\left.i \neq j\right\} \quad$ (the n-th conf. sp)
k : an alg closed field of char 0
X : a hyperbolic curve $/ k$ of type (g, r)
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \cdots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}\right.$ if $\left.i \neq j\right\} \quad$ (the n-th conf. sp)
In particular, the projections obtained by forgetting the last factors

$$
X_{n} \rightarrow X_{n-1} \rightarrow \cdots \quad \rightarrow \quad X_{2} \rightarrow X
$$

induce a sequence of (outer) surjections

$$
\Pi_{n} \stackrel{\text { def }}{=} \pi_{1}\left(X_{n}\right) \rightarrow \Pi_{n-1} \rightarrow \cdots \rightarrow \Pi_{2} \rightarrow \Pi_{1} .
$$

k : an alg closed field of char 0
X : a hyperbolic curve $/ k$ of type (g, r)
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \cdots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}\right.$ if $\left.i \neq j\right\} \quad$ (the n-th conf. sp)
In particular, the projections obtained by forgetting the last factors

$$
X_{n} \rightarrow X_{n-1} \rightarrow \cdots \quad \rightarrow \quad X_{2} \rightarrow X
$$

induce a sequence of (outer) surjections

$$
\Pi_{n} \stackrel{\text { def }}{=} \pi_{1}\left(X_{n}\right) \rightarrow \Pi_{n-1} \rightarrow \cdots \rightarrow \Pi_{2} \rightarrow \Pi_{1} .
$$

Write $K_{m} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right), \Pi_{0} \stackrel{\text { def }}{=}\{1\}$. Then we have

$$
\{1\}=K_{n} \subseteq K_{n-1} \subseteq \cdots \subseteq K_{1} \subseteq K_{0}=\Pi_{n}
$$

Note: We have the following commutative diagram

- where Y is a hyperbolic curve of type $(g, r+m)$.

Definition

$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is F-admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha(F)=F$ for every fiber subgroup $F \subseteq \Pi_{n}$ (i.e., the kernel of $\Pi_{n} \rightarrow \Pi_{n^{\prime}}$ which arises from some projection $X_{n} \rightarrow X_{n^{\prime}}$).

Definition

$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is F-admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha(F)=F$ for every fiber subgroup $F \subseteq \Pi_{n}$ (i.e., the kernel of $\Pi_{n} \rightarrow \Pi_{n^{\prime}}$ which arises from some projection $X_{n} \rightarrow X_{n^{\prime}}$).
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is C -admissible $\stackrel{\text { def }}{\Leftrightarrow}$
(i) $\alpha\left(K_{m}\right)=K_{m} \quad(0 \leq m \leq n)$;
(ii) $\alpha: K_{m} / K_{m+1} \xrightarrow{\sim} K_{m} / K_{m+1}$ induces a bijection between the set of cuspidal inertia subgps $\subseteq K_{m} / K_{m+1}$.

Definition

$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is F-admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha(F)=F$ for every fiber subgroup $F \subseteq \Pi_{n}$ (i.e., the kernel of $\Pi_{n} \rightarrow \Pi_{n^{\prime}}$ which arises from some projection $X_{n} \rightarrow X_{n^{\prime}}$).
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is C -admissible $\stackrel{\text { def }}{\Leftrightarrow}$
(i) $\alpha\left(K_{m}\right)=K_{m} \quad(0 \leq m \leq n)$;
(ii) $\alpha: K_{m} / K_{m+1} \xrightarrow{\sim} K_{m} / K_{m+1}$ induces a bijection between the set of cuspidal inertia subgps $\subseteq K_{m} / K_{m+1}$.
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is FC-admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha$ is F-admissible and C-admissible.

Aut ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{FC}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\}$ $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=} \mathrm{Aut}^{\mathrm{FC}}\left(\Pi_{n}\right) / \operatorname{Inn}\left(\Pi_{n}\right)$

Aut ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{FC}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\}$
$\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=} \mathrm{Aut}^{\mathrm{FC}}\left(\Pi_{n}\right) / \operatorname{Inn}\left(\Pi_{n}\right)$
Observe: $X_{n+1} \rightarrow X_{n}$ "forgetting the last factor" induces

$$
\phi_{n}: \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) .
$$

Aut ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{FC}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\}$
$\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=} \mathrm{Aut}^{\mathrm{FC}}\left(\Pi_{n}\right) / \operatorname{Inn}\left(\Pi_{n}\right)$
Observe: $X_{n+1} \rightarrow X_{n}$ "forgetting the last factor" induces

$$
\phi_{n}: \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) .
$$

Theorem 2 (Hoshi-Mochizuki)
ϕ_{n} is injective for $n \geq 1$.
$\operatorname{Aut}{ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{FC}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\}$
$\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=} \mathrm{Aut}^{\mathrm{FC}}\left(\Pi_{n}\right) / \operatorname{Inn}\left(\Pi_{n}\right)$
Observe: $X_{n+1} \rightarrow X_{n}$ "forgetting the last factor" induces

$$
\phi_{n}: \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) .
$$

Theorem 2 (Hoshi-Mochizuki)
ϕ_{n} is injective for $n \geq 1$.

Remark:

- ϕ_{n} is bijective for $n \geq 4$.
- \exists pro-l version of ϕ_{n} and similar results are known.
- There are related works due to Ihara, Kaneko, Nakamura, Takao, Ueno, Harbater-Schneps, Tsunogai (cf., e.g., "Out").
- There are related works due to Ihara, Kaneko, Nakamura, Takao, Ueno, Harbater-Schneps, Tsunogai (cf., e.g., "Out").

Theorem $2 \Longrightarrow$ Theorem 1
Let $X \stackrel{\text { def }}{=} C \times{ }_{K} \bar{K}, k \stackrel{\text { def }}{=} \bar{K}$
$\left(\Longrightarrow \pi_{1}\left(C \times_{K} \bar{K}\right)=\pi_{1}(X)=\Pi_{1}\right)$

- There are related works due to Ihara, Kaneko, Nakamura, Takao, Ueno, Harbater-Schneps, Tsunogai (cf., e.g., "Out ${ }^{\text {b" }}$).

Theorem $2 \Longrightarrow$ Theorem 1
Let $X \stackrel{\text { def }}{=} C \times_{K} \bar{K}, k \stackrel{\text { def }}{=} \bar{K}$
$\left(\Longrightarrow \pi_{1}\left(C \times_{K} \bar{K}\right)=\pi_{1}(X)=\Pi_{1}\right)$
Note: The outer rep'n $\rho: G_{K} \rightarrow \operatorname{Out}\left(\Pi_{1}\right)$ factors as

$$
G_{K} \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{1}\right) \hookrightarrow \operatorname{Out}\left(\Pi_{1}\right) .
$$

Thus, to show that ρ is injective, it suffices to show that

$$
G_{K} \rightarrow \text { Out }^{\mathrm{FC}}\left(\Pi_{1}\right) \text { is injective. }
$$

This follows from the commutativity of the diagram

This follows from the commutativity of the diagram

Today, for simplicity, we consider the proof of the injectivity of ϕ_{1}.
\Longrightarrow It suffices to verify the following proposition:

Proposition 1

Write

$\Xi \stackrel{\text { def }}{=} \operatorname{Ker}\left(p_{1}\right) \cap \operatorname{Ker}\left(p_{2}\right)\left(\subseteq \Pi_{2}\right)$.

Proposition 1

Write

$\Xi \stackrel{\text { def }}{=} \operatorname{Ker}\left(p_{1}\right) \cap \operatorname{Ker}\left(p_{2}\right)\left(\subseteq \Pi_{2}\right)$.
Then the injection (cf. the center-freeness of Π_{2})

$$
\Xi \xrightarrow{\text { conj. }} \mathrm{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right)
$$

is bijective.

Proposition $1 \Longrightarrow$ Theorem $2\left(\phi_{1}: \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{2}\right) \hookrightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)\right)$

$$
\text { Let } \alpha \in \operatorname{Aut}^{\mathrm{FC}}\left(\Pi_{2}\right) \text { s.t. }
$$

Proposition $1 \Longrightarrow$ Theorem $2\left(\phi_{1}:\right.$ Out $^{\mathrm{FC}}\left(\Pi_{2}\right) \hookrightarrow$ Out $\left.^{\mathrm{FC}}\left(\Pi_{1}\right)\right)$

Let $\alpha \in \operatorname{Aut}{ }^{\mathrm{FC}}\left(\Pi_{2}\right)$ s.t.

Observe: Let $\mathbb{D} \subseteq \Pi_{2}$ be a decomposition group assoc. to the diagonal $\subseteq X \times_{k} X$. Then it holds that

$$
\alpha(\mathbb{D})=\pi \cdot \mathbb{D} \cdot \pi^{-1} \quad\left(\pi \in \Pi_{2}\right)
$$

(cf. our assumption that α is FC-admissible).

Thus, since

$$
\begin{aligned}
& \mathbb{D} \longrightarrow \Pi_{2} \\
& \downarrow \quad \downarrow\left(p_{1}, p_{2}\right) \\
& \{(a, a)\} \longleftrightarrow \Pi_{1} \times \Pi_{1}
\end{aligned}
$$

we conclude that

$$
\alpha_{2}=\operatorname{Inn}\left(g_{2}\right) \quad\left(g_{2} \in \Pi_{1}\right)
$$

Thus, since

$$
\begin{aligned}
& \mathbb{D} \longleftrightarrow \Pi_{2} \\
& \downarrow \quad \downarrow\left(p_{1}, p_{2}\right) \\
& \{(a, a)\} \longleftrightarrow \Pi_{1} \times \Pi_{1}
\end{aligned}
$$

we conclude that

$$
\alpha_{2}=\operatorname{Inn}\left(g_{2}\right) \quad\left(g_{2} \in \Pi_{1}\right)
$$

Let $g \in \Pi_{2}$ s.t. $p_{1}(g)=g_{1}$ and $p_{2}(g)=g_{2}$.

Thus, since

$$
\begin{aligned}
& \mathbb{D} \longleftrightarrow \Pi_{2} \\
& \downarrow \quad \downarrow^{\downarrow}\left(p_{1}, p_{2}\right) \\
& \{(a, a)\} \longleftrightarrow \Pi_{1} \times \Pi_{1}
\end{aligned}
$$

we conclude that

$$
\alpha_{2}=\operatorname{Inn}\left(g_{2}\right) \quad\left(g_{2} \in \Pi_{1}\right)
$$

Let $g \in \Pi_{2}$ s.t. $p_{1}(g)=g_{1}$ and $p_{2}(g)=g_{2}$.

$$
\Longrightarrow \operatorname{Inn}(g)^{-1} \circ \alpha \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right) \stackrel{\leftarrow}{\leftarrow}
$$

Thus, since

$$
\begin{aligned}
& \mathbb{D} \longleftrightarrow \Pi_{2} \\
& \downarrow \quad \downarrow^{\downarrow}\left(p_{1}, p_{2}\right) \\
& \{(a, a)\} \longleftrightarrow \Pi_{1} \times \Pi_{1}
\end{aligned}
$$

we conclude that

$$
\alpha_{2}=\operatorname{Inn}\left(g_{2}\right) \quad\left(g_{2} \in \Pi_{1}\right)
$$

Let $g \in \Pi_{2}$ s.t. $p_{1}(g)=g_{1}$ and $p_{2}(g)=g_{2}$.

$$
\begin{aligned}
& \Longrightarrow \operatorname{Inn}(g)^{-1} \circ \alpha \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right) \leftleftarrows \Xi \\
& \Longrightarrow \alpha \in \operatorname{Inn}\left(\Pi_{2}\right)
\end{aligned}
$$

Thus, since

$$
\begin{aligned}
& \mathbb{D} \longleftrightarrow \Pi_{2} \\
& \downarrow \quad \downarrow\left(p_{1}, p_{2}\right) \\
& \{(a, a)\} \longleftrightarrow \Pi_{1} \times \Pi_{1}
\end{aligned}
$$

we conclude that

$$
\alpha_{2}=\operatorname{Inn}\left(g_{2}\right) \quad\left(g_{2} \in \Pi_{1}\right)
$$

Let $g \in \Pi_{2}$ s.t. $p_{1}(g)=g_{1}$ and $p_{2}(g)=g_{2}$.

$$
\begin{aligned}
& \Longrightarrow \operatorname{Inn}(g)^{-1} \circ \alpha \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right) \approx \Xi \\
& \Longrightarrow \alpha \in \operatorname{Inn}\left(\Pi_{2}\right)
\end{aligned}
$$

Proof of Proposition 1 ... an application of CmbGC!

§2 Proof of Prop1 - the tripod case

Suppose that $X=\mathbb{P}_{k}^{1} \backslash\{a, b, c\}$.
Write $\Pi_{2 / 1} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{2} \xrightarrow{p_{1}} \Pi_{1}\right)$. In particular, we have

$$
1 \longrightarrow \Pi_{2 / 1} \longrightarrow \Pi_{2} \xrightarrow{p_{1}} \Pi_{1} \longrightarrow 1
$$

Let $\alpha \in \operatorname{Aut}{ }^{\mathrm{IFC}}\left(\Pi_{2}\right)$. We want to show that α is a Ξ-inner.

§2 Proof of Prop1 - the tripod case

Suppose that $X=\mathbb{P}_{k}^{1} \backslash\{a, b, c\}$.
Write $\Pi_{2 / 1} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{2} \xrightarrow{p_{1}} \Pi_{1}\right)$. In particular, we have

$$
1 \longrightarrow \Pi_{2 / 1} \longrightarrow \Pi_{2} \xrightarrow{p_{1}} \Pi_{1} \longrightarrow 1
$$

Let $\alpha \in \operatorname{Aut}{ }^{\mathrm{IFC}}\left(\Pi_{2}\right)$. We want to show that α is a Ξ-inner.
First, we consider the geom. generic fiber of $\mathrm{pr}_{1}: X_{2} \rightarrow X$.

Then since

- $p_{2}: \Pi_{2} \rightarrow \Pi_{1}$ is induced by the open immersion

- $\alpha_{2}=$ id (cf. $\alpha \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right)$),
- α is C-admissible,
we conclude that α induces the identity permutation on the set of conjugacy classes of cuspidal inertia groups of $\Pi_{2 / 1}$.

Fix: a cuspidal inertia subgroup $I_{a} \subseteq \Pi_{2 / 1}$ assoc. to a.

Fix: a cuspidal inertia subgroup $I_{a} \subseteq \Pi_{2 / 1}$ assoc. to a.

$$
\Longrightarrow \alpha\left(I_{a}\right)=\xi \cdot I_{a} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right)
$$

Fix: a cuspidal inertia subgroup $I_{a} \subseteq \Pi_{2 / 1}$ assoc. to a.

$$
\begin{aligned}
& \Longrightarrow \alpha\left(I_{a}\right)=\xi \cdot I_{a} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right) \\
& \Longrightarrow p_{2}\left(I_{a}\right)=p_{2}\left(\alpha\left(I_{a}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(I_{a}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\mathrm{cf.} \alpha_{2}=\mathrm{id}\right)
\end{aligned}
$$

Fix: a cuspidal inertia subgroup $I_{a} \subseteq \Pi_{2 / 1}$ assoc. to a.

$$
\begin{aligned}
& \Longrightarrow \alpha\left(I_{a}\right)=\xi \cdot I_{a} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right) \\
& \Longrightarrow p_{2}\left(I_{a}\right)=p_{2}\left(\alpha\left(I_{a}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(I_{a}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\text { cf. } \alpha_{2}=\mathrm{id}\right) \\
& \Longrightarrow p_{2}(\xi) \in N_{\Pi_{1}}\left(p_{2}\left(I_{a}\right)\right)=p_{2}\left(I_{a}\right)
\end{aligned}
$$

Fix: a cuspidal inertia subgroup $I_{a} \subseteq \Pi_{2 / 1}$ assoc. to a.

$$
\begin{aligned}
& \Longrightarrow \alpha\left(I_{a}\right)=\xi \cdot I_{a} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right) \\
& \Longrightarrow p_{2}\left(I_{a}\right)=p_{2}\left(\alpha\left(I_{a}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(I_{a}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\text { cf. } \alpha_{2}=\mathrm{id}\right) \\
& \Longrightarrow p_{2}(\xi) \in N_{\Pi_{1}}\left(p_{2}\left(I_{a}\right)\right)=p_{2}\left(I_{a}\right)
\end{aligned}
$$

Thus, replacing ξ by a suitable element, we may assume WLOG that

$$
\xi \in \Xi .
$$

Fix: a cuspidal inertia subgroup $I_{a} \subseteq \Pi_{2 / 1}$ assoc. to a.
$\Longrightarrow \alpha\left(I_{a}\right)=\xi \cdot I_{a} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right)$
$\Longrightarrow p_{2}\left(I_{a}\right)=p_{2}\left(\alpha\left(I_{a}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(I_{a}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\right.$ cf. $\left.\alpha_{2}=\mathrm{id}\right)$
$\Longrightarrow p_{2}(\xi) \in N_{\Pi_{1}}\left(p_{2}\left(I_{a}\right)\right)=p_{2}\left(I_{a}\right)$
Thus, replacing ξ by a suitable element, we may assume WLOG that

$$
\xi \in \Xi .
$$

Therefore, replacing α by $\operatorname{Inn}\left(\xi^{-1}\right) \circ \alpha$, we may assume WLOG that

$$
\alpha\left(I_{a}\right)=I_{a} .
$$

Under this (additional) assumption, let us prove $\alpha=\mathrm{id}$.

Step 1 (group-theoretic argument)

Observe: We have an exact sequence

$$
1 \longrightarrow \Pi_{2 / 1} \longrightarrow \Pi_{2} \xrightarrow{p_{1}} \Pi_{1} \longrightarrow 1
$$

Moreover, it holds that $\alpha_{1}=\mathrm{id}$ (cf. $\alpha \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right)$). Thus, since $\Pi_{2 / 1}$ is center-free, to verify $\alpha=\mathrm{id}$, it suffices to show that

$$
\left.\alpha_{2 / 1} \stackrel{\text { def }}{=} \alpha\right|_{\Pi_{2 / 1}}=\mathrm{id} .
$$

Step 1 (group-theoretic argument)

Observe: We have an exact sequence

$$
1 \longrightarrow \Pi_{2 / 1} \longrightarrow \Pi_{2} \xrightarrow{p_{1}} \Pi_{1} \longrightarrow 1
$$

Moreover, it holds that $\alpha_{1}=\mathrm{id}$ (cf. $\alpha \in \operatorname{Aut}{ }^{\mathrm{IFC}}\left(\Pi_{2}\right)$). Thus, since $\Pi_{2 / 1}$ is center-free, to verify $\alpha=\mathrm{id}$, it suffices to show that

$$
\left.\alpha_{2 / 1} \stackrel{\text { def }}{=} \alpha\right|_{\Pi_{2 / 1}}=\mathrm{id} .
$$

Step 2 (application of CmbGC)
$Z^{\log }$: a "natural" smooth log curve $/ k$ assoc. to X
$Z_{2}^{\log }$: the 2 nd \log configuration space of $Z^{\log }$

Note: $\Pi_{n} \xrightarrow{\sim} \pi_{1}^{\log }\left(Z_{n}^{\log }\right)$.

Note: $\Pi_{n} \xrightarrow{\sim} \pi_{1}^{\log }\left(Z_{n}^{\log }\right)$.

Next, we consider the fiber of $\mathrm{pr}_{1}: Z_{2}^{\log } \rightarrow Z^{\log }$ over b.

Note: $\Pi_{n} \xrightarrow{\sim} \pi_{1}^{\log }\left(Z_{n}^{\log }\right)$.

Next, we consider the fiber of $\mathrm{pr}_{1}: Z_{2}^{\log } \rightarrow Z^{\log }$ over b.

$\Pi_{F_{b}} \subseteq \Pi_{2 / 1}$: a unique (among its $\Pi_{2 / 1}$-cong.) verticial subgp assoc. to F_{b} which contains (the fixed) I_{a}

Note: We have the following commutative diagram:

$$
\begin{aligned}
& J_{b} \longrightarrow \Pi_{1} \\
& \text { id } \downarrow_{2} \alpha_{1}=\mathrm{id} \mid \downarrow \\
& \operatorname{Out}\left(\Pi_{2 / 1}\right) \\
& J_{b} \operatorname{Out}\left(\alpha_{2 / 1}\right) \downarrow 2 \\
& \Pi_{1} \longrightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)
\end{aligned}
$$

- where $J_{b} \subseteq \Pi_{1}$ is a cuspidal inertia subgp assoc. to b.

Note: We have the following commutative diagram:

$$
\begin{aligned}
J_{b} & \longrightarrow \Pi_{1} \\
\text { id }\left.\right|_{\imath} & \alpha_{1}=\operatorname{id} \mid \downarrow \\
\downarrow & \operatorname{Out}\left(\Pi_{2 / 1}\right) \\
J_{b} & \left.\longrightarrow \Pi_{2 / 1}\right) \downarrow \\
\Pi_{1} & \longrightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)
\end{aligned}
$$

— where $J_{b} \subseteq \Pi_{1}$ is a cuspidal inertia subgp assoc. to b.

Then since the composite $J_{b} \hookrightarrow \Pi_{1} \rightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)$ is of IPSC-type, it follows from CmbGC that $\alpha_{2 / 1}$ is graphic, hence that

$$
\alpha_{2 / 1}\left(\Pi_{F_{b}}\right) \text { is a verticial subgp } \supseteq \alpha_{2 / 1}\left(I_{a}\right)=I_{a} .
$$

Note: We have the following commutative diagram:

$$
\begin{aligned}
& J_{b} \longrightarrow \Pi_{1} \\
& \text { id } \downarrow_{2} \alpha_{1}=\mathrm{id} \mid \downarrow \\
& \operatorname{Out}\left(\Pi_{2 / 1}\right) \\
& J_{b} \operatorname{Out}\left(\alpha_{2 / 1}\right) \downarrow 2 \\
& \Pi_{1} \longrightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)
\end{aligned}
$$

— where $J_{b} \subseteq \Pi_{1}$ is a cuspidal inertia subgp assoc. to b.

Then since the composite $J_{b} \hookrightarrow \Pi_{1} \rightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right)$ is of IPSC-type, it follows from CmbGC that $\alpha_{2 / 1}$ is graphic, hence that

$$
\alpha_{2 / 1}\left(\Pi_{F_{b}}\right) \text { is a verticial subgp } \supseteq \alpha_{2 / 1}\left(I_{a}\right)=I_{a}
$$

$\Longrightarrow \alpha_{2 / 1}\left(\Pi_{F_{b}}\right)=\Pi_{F_{b}} \quad$ (cf. the "uniqueness" of $\Pi_{F_{b}}$)

Next, we consider the fiber of $\mathrm{pr}_{1}: Z_{2}^{\log } \rightarrow Z^{\log }$ over c.

Next, we consider the fiber of $\mathrm{pr}_{1}: Z_{2}^{\log } \rightarrow Z^{\log }$ over c.

$\Pi_{F_{c}} \subseteq \Pi_{2 / 1}$: a unique (among its $\Pi_{2 / 1}$-cong.) verticial subgp assoc. to F_{c} which contains (the fixed) I_{a}

Next, we consider the fiber of $\mathrm{pr}_{1}: Z_{2}^{\log } \rightarrow Z^{\log }$ over c.

$\Pi_{F_{c}} \subseteq \Pi_{2 / 1}$: a unique (among its $\Pi_{2 / 1}$-cong.) verticial subgp assoc. to F_{c} which contains (the fixed) I_{a}
$\Longrightarrow \alpha_{2 / 1}\left(\Pi_{F_{c}}\right)=\Pi_{F_{c}}$

Note: $p_{2}: \Pi_{2} \rightarrow \Pi_{1}$ induces $\Pi_{F_{b}} \xrightarrow{\sim} \Pi_{1}$ and $\Pi_{F_{c}} \xrightarrow{\sim} \Pi_{1}$. $\left.\Longrightarrow \alpha_{2 / 1}\right|_{\Pi_{F_{b}}}=$ id, $\left.\quad \alpha_{2 / 1}\right|_{\Pi_{F_{c}}}=$ id \quad (cf. $\alpha_{2}=$ id)

Note: $p_{2}: \Pi_{2} \rightarrow \Pi_{1}$ induces $\Pi_{F_{b}} \xrightarrow{\sim} \Pi_{1}$ and $\Pi_{F_{c}} \xrightarrow{\sim} \Pi_{1}$.
$\left.\Longrightarrow \alpha_{2 / 1}\right|_{\Pi_{F_{b}}}=$ id, $\left.\quad \alpha_{2 / 1}\right|_{\Pi_{F_{c}}}=$ id \quad (cf. $\alpha_{2}=$ id)

Step 3 (topological argument)

Since

$$
\Pi_{2 / 1} \cong \underset{\longrightarrow}{\lim }\left(\Pi_{F_{b}} \hookleftarrow I_{a} \hookrightarrow \Pi_{F_{c}}\right)
$$

(cf. van Kampen), we conclude that $\alpha_{2 / 1}=\mathrm{id}$.
This completes the proof of the tripod case of Prop 1.

§3 Proof of Prop 1 - the affine case

Suppose that X is affine. For simplicity, we assume that $r \geq 2$

Let $\alpha \in \operatorname{Aut}{ }^{\mathrm{IFC}}\left(\Pi_{2}\right)$. We want to show that α is a Ξ-inner.
Suppose that X is affine. For simplicity, we assume that $r \geq 2$. Let $\alpha \in \operatorname{Aut}{ }^{\mathrm{IFC}}\left(\Pi_{2}\right)$. We want to show that α is a Ξ-inner.

Step 1 (application of CmbGC)

$Z^{\log }$: a "natural" smooth log curve $/ k$ assoc. to X $Z_{2}^{\log }$: the 2 nd \log configuration space of $Z^{\log }$

Suppose that X is affine. For simplicity, we assume that $r \geq 2$. Let $\alpha \in \operatorname{Aut}{ }^{\mathrm{IFC}}\left(\Pi_{2}\right)$. We want to show that α is a Ξ-inner.

Step 1 (application of CmbGC)

$Z^{\log }$: a "natural" smooth log curve $/ k$ assoc. to X
$Z_{2}^{\log }$: the 2 nd \log configuration space of $Z^{\log }$

Let us consider the fiber of $\mathrm{pr}_{1}: Z_{2}^{\log } \rightarrow Z^{\log }$ over x.

Fix: a (nodal) edge-like subgp $\Pi_{\nu_{x}} \subseteq \Pi_{2 / 1}$ assoc. to ν_{x}.
$\Pi_{E_{x}}, \Pi_{F_{x}} \subseteq \Pi_{2 / 1}$: two verticial subgp assoc. to E_{x}, F_{x} which contains (the fixed) $\Pi_{\nu_{x}}$

Fix: a (nodal) edge-like subgp $\Pi_{\nu_{x}} \subseteq \Pi_{2 / 1}$ assoc. to ν_{x}.
$\Pi_{E_{x}}, \Pi_{F_{x}} \subseteq \Pi_{2 / 1}$: two verticial subgp assoc. to E_{x}, F_{x} which contains (the fixed) $\Pi_{\nu_{x}}$

Note: We have the following commutative diagram:

$$
\begin{aligned}
& J_{x} \longleftrightarrow \Pi_{1} \longrightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right) \\
& \text { id } \downarrow 2 \quad \alpha_{1}=\mathrm{id} \downarrow 2 \quad \operatorname{Out}\left(\alpha_{2 / 1}\right) \downarrow 2 \\
& J_{x} \longleftrightarrow \Pi_{1} \longrightarrow \operatorname{Out}\left(\Pi_{2 / 1}\right) \text {. }
\end{aligned}
$$

Then it follows from CmbGC that $\alpha_{2 / 1}$ is graphic, hence that

$$
\alpha\left(\Pi_{\nu_{x}}\right)=\xi \cdot \Pi_{\nu_{x}} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right)
$$

Then it follows from CmbGC that $\alpha_{2 / 1}$ is graphic, hence that

$$
\begin{gathered}
\alpha\left(\Pi_{\nu_{x}}\right)=\xi \cdot \Pi_{\nu_{x}} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right) \\
\Longrightarrow p_{2}\left(\Pi_{\nu_{x}}\right)=p_{2}\left(\alpha\left(\Pi_{\nu_{x}}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(\Pi_{\nu_{x}}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\text { cf. } \alpha_{2}=\mathrm{id}\right)
\end{gathered}
$$

Then it follows from CmbGC that $\alpha_{2 / 1}$ is graphic, hence that

$$
\begin{gathered}
\alpha\left(\Pi_{\nu_{x}}\right)=\xi \cdot \Pi_{\nu_{x}} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right) \\
\Longrightarrow p_{2}\left(\Pi_{\nu_{x}}\right)=p_{2}\left(\alpha\left(\Pi_{\nu_{x}}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(\Pi_{\nu_{x}}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\text { cf. } \alpha_{2}=\mathrm{id}\right) \\
\Longrightarrow p_{2}(\xi) \in N_{\Pi_{1}}\left(p_{2}\left(\Pi_{\nu_{x}}\right)\right)=p_{2}\left(\Pi_{\nu_{x}}\right)
\end{gathered}
$$

Then it follows from CmbGC that $\alpha_{2 / 1}$ is graphic, hence that

$$
\begin{gathered}
\alpha\left(\Pi_{\nu_{x}}\right)=\xi \cdot \Pi_{\nu_{x}} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right) \\
\Longrightarrow p_{2}\left(\Pi_{\nu_{x}}\right)=p_{2}\left(\alpha\left(\Pi_{\nu_{x}}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(\Pi_{\nu_{x}}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\text { cf. } \alpha_{2}=\mathrm{id}\right) \\
\Longrightarrow p_{2}(\xi) \in N_{\Pi_{1}}\left(p_{2}\left(\Pi_{\nu_{x}}\right)\right)=p_{2}\left(\Pi_{\nu_{x}}\right)
\end{gathered}
$$

Thus, replacing ξ by a suitable element, we may assume WLOG that

$$
\xi \in \Xi .
$$

Then it follows from CmbGC that $\alpha_{2 / 1}$ is graphic, hence that

$$
\begin{gathered}
\alpha\left(\Pi_{\nu_{x}}\right)=\xi \cdot \Pi_{\nu_{x}} \cdot \xi^{-1} \quad\left(\xi \in \Pi_{2 / 1}\right) \\
\Longrightarrow p_{2}\left(\Pi_{\nu_{x}}\right)=p_{2}\left(\alpha\left(\Pi_{\nu_{x}}\right)\right)=p_{2}(\xi) \cdot p_{2}\left(\Pi_{\nu_{x}}\right) \cdot p_{2}(\xi)^{-1} \quad\left(\text { cf. } \alpha_{2}=\mathrm{id}\right) \\
\Longrightarrow p_{2}(\xi) \in N_{\Pi_{1}}\left(p_{2}\left(\Pi_{\nu_{x}}\right)\right)=p_{2}\left(\Pi_{\nu_{x}}\right)
\end{gathered}
$$

Thus, replacing ξ by a suitable element, we may assume WLOG that

$$
\xi \in \Xi .
$$

Therefore, replacing α by $\operatorname{Inn}\left(\xi^{-1}\right) \circ \alpha$, we may assume WLOG that

$$
\alpha\left(\Pi_{\nu_{x}}\right)=\Pi_{\nu_{x}} .
$$

Under this (additional) assumption, let us prove $\alpha=\mathrm{id}$.

Then since $\alpha_{2 / 1}$ is graphic, we conclude that

$$
\begin{aligned}
& \alpha_{2 / 1}\left(\Pi_{E_{x}}\right), \quad \alpha_{2 / 1}\left(\Pi_{F_{x}}\right) \text { are verticial subgp } \supseteq \alpha_{2 / 1}\left(\Pi_{\nu_{x}}\right)=\Pi_{\nu_{x}} . \\
\Longrightarrow & \alpha_{2 / 1}\left(\Pi_{E_{x}}\right)=\Pi_{E_{x}}, \quad \alpha_{2 / 1}\left(\Pi_{F_{x}}\right)=\Pi_{F_{x}}
\end{aligned}
$$

Then since $\alpha_{2 / 1}$ is graphic, we conclude that

$$
\alpha_{2 / 1}\left(\Pi_{E_{x}}\right), \quad \alpha_{2 / 1}\left(\Pi_{F_{x}}\right) \text { are verticial subgp } \supseteq \alpha_{2 / 1}\left(\Pi_{\nu_{x}}\right)=\Pi_{\nu_{x}} .
$$

$\Longrightarrow \alpha_{2 / 1}\left(\Pi_{E_{x}}\right)=\Pi_{E_{x}}, \quad \alpha_{2 / 1}\left(\Pi_{F_{x}}\right)=\Pi_{F_{x}}$
Step 2 (group-theoretic argument)
Observe: We have an exact sequence

$$
1 \longrightarrow \Pi_{2 / 1} \longrightarrow \Pi_{2} \xrightarrow{p_{1}} \Pi_{1} \longrightarrow 1
$$

Moreover, it holds that $\alpha_{1}=\mathrm{id}$ (cf. $\alpha \in \operatorname{Aut}^{\mathrm{IFC}}\left(\Pi_{2}\right)$). Thus, since $\Pi_{2 / 1}$ is center-free, to verify $\alpha=\mathrm{id}$, it suffices to show that

$$
\left.\alpha_{2 / 1} \stackrel{\text { def }}{=} \alpha\right|_{\Pi_{2 / 1}}=\mathrm{id} .
$$

Step 3 (topological argument)

Note: $p_{2}: \Pi_{2} \rightarrow \Pi_{1}$ induces $\Pi_{F_{x}} \xrightarrow{\sim} \Pi_{1}$.
$\left.\Longrightarrow \alpha_{2 / 1}\right|_{\Pi_{F_{x}}}=$ id $\quad\left(c f . \alpha_{2}=\mathrm{id}\right)$

Step 3 (topological argument)

Note: $p_{2}: \Pi_{2} \rightarrow \Pi_{1}$ induces $\Pi_{F_{x}} \xrightarrow{\sim} \Pi_{1}$.
$\left.\Longrightarrow \alpha_{2 / 1}\right|_{\Pi_{F_{x}}}=$ id $\quad\left(c f . \alpha_{2}=\mathrm{id}\right)$

Then since

$$
\Pi_{2 / 1} \cong \underset{\longrightarrow}{\lim }\left(\Pi_{E_{x}} \hookleftarrow \Pi_{\nu_{x}} \hookrightarrow \Pi_{F_{x}}\right)
$$

(cf. van Kampen), to verify $\alpha_{2 / 1}=\mathrm{id}$, it suffices to show that

$$
\left.\alpha_{2 / 1}\right|_{\Pi_{E_{x}}}=\mathrm{id} .
$$

To verify this, by applying

- deformation theory of stable log curves,
- specialization theorem of log étale fundamental groups,
we may replace " Z log $/ k$ " by

$W_{2}^{\log }$: the 2 nd \log configuration space of $W^{\log }$
Note: $\quad \Pi_{n} \xrightarrow{\sim} \operatorname{Ker}\left(\pi_{1}^{\log }\left(W_{n}^{\log }\right) \rightarrow \pi_{1}^{\log }\left(S^{\log }\right)\right)$.

Let us consider the fiber of $\mathrm{pr}_{1}: W_{2}^{\log } \rightarrow W^{\log }$ over x.

Let us consider the fiber of $\mathrm{pr}_{1}: W_{2}^{\log } \rightarrow W^{\log }$ over x.

$$
\begin{aligned}
& \pi_{2 / 1} \cong \pi_{1}^{\log }\left(\left.\alpha_{2 / 1}\right|_{\Pi_{T_{x}}}=\operatorname{id} \quad\left(\text { cf. }\left.\alpha_{2 / 1}\right|_{\Pi_{F_{x}}}=\mathrm{id}\right)\right.
\end{aligned}
$$

Let us consider the fiber of $\mathrm{pr}_{1}: W_{2}^{\log } \rightarrow W^{\log }$ over x.

$$
\begin{aligned}
& \pi_{2 / 1} \cong \pi_{1}^{\log }\left(\left.\alpha_{2 / 1}\right|_{\Pi_{T_{x}}}=\operatorname{id} \quad\left(\text { cf. }\left.\alpha_{2 / 1}\right|_{\Pi_{F_{x}}}=\mathrm{id}\right)\right.
\end{aligned}
$$

$T^{\text {log. }}$ a "natural" smooth log curve ${ }_{/ S^{\log }}$ assoc. to $T \backslash\{$ marked pts, node $\}$ $T_{2}^{\log }$: the 2 nd \log configuration space of $Z^{\log }$
$\Pi_{n}^{\text {tod }} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\pi_{1}^{\log }\left(T_{n}^{\log }\right) \rightarrow \pi_{1}^{\log }\left(S^{\log }\right)\right)$

In particular, we have

In particular, we have

Then since $\alpha_{2 / 1}\left(\Pi_{E_{x}}\right)=\Pi_{E_{x}},\left.\quad \alpha_{2 / 1}\right|_{\Pi_{T_{x}}}=\mathrm{id}$, it holds that

$$
\alpha_{2 / 1}\left(\Pi_{2 / 1}^{\mathrm{tpd}}\right)=\Pi_{2 / 1}^{\mathrm{tpd}}
$$

(cf. van Kampen).

In particular, we have

Then since $\alpha_{2 / 1}\left(\Pi_{E_{x}}\right)=\Pi_{E_{x}},\left.\quad \alpha_{2 / 1}\right|_{\Pi_{T_{x}}}=\mathrm{id}$, it holds that

$$
\alpha_{2 / 1}\left(\Pi_{2 / 1}^{\mathrm{tpd}}\right)=\Pi_{2 / 1}^{\mathrm{tpd}}
$$

(cf. van Kampen). Moreover, one verifies that $\left.\alpha_{2 / 1}\right|_{\Pi_{2 / 1}^{\mathrm{tpd}}}$ arises from

$$
\exists^{\exists} \alpha^{\operatorname{tpd}} \in \operatorname{Aut}{ }^{\mathrm{IFC}}\left(\Pi_{2}^{\operatorname{tpd}}\right) \leftarrow \Xi^{\operatorname{tpd}}\left(\subseteq \Pi_{2 / 1}^{\operatorname{tpd}}\right)
$$

(cf. §2). Thus, we conclude that $\left.\alpha_{2 / 1}\right|_{\Pi_{2 / 1}^{\mathrm{tpd}}}$ is a $\Pi_{2 / 1}^{\mathrm{tpd}}$-inner.

Lemma 1
Let G be a profinite group, $H \subseteq G$ a closed subgroup, $\beta \in \operatorname{Inn}(G)$ s.t.
$\left.\beta\right|_{H}=\mathrm{id}$. Suppose that

- $N_{G}(H)=H$;
- H is center-free.

Then $\beta=\mathrm{id}$.

Lemma 1
Let G be a profinite group, $H \subseteq G$ a closed subgroup, $\beta \in \operatorname{Inn}(G)$ s.t.
$\left.\beta\right|_{H}=\mathrm{id}$. Suppose that

- $N_{G}(H)=H$;
- H is center-free.

Then $\beta=\mathrm{id}$.

We would like to apply this Lemma, to the present situation, by taking " G " to be $\Pi_{2 / 1}^{\mathrm{tpd}}, \quad$ " H " to be $\Pi_{T_{x}}, \quad$ " β " to be $\left.\alpha_{2 / 1}\right|_{\Pi_{2 / 1}^{\mathrm{tpd}}}$.

Lemma 1
Let G be a profinite group, $H \subseteq G$ a closed subgroup, $\beta \in \operatorname{Inn}(G)$ s.t.
$\left.\beta\right|_{H}=\mathrm{id}$. Suppose that

- $N_{G}(H)=H$;
- H is center-free.

Then $\beta=\mathrm{id}$.

We would like to apply this Lemma, to the present situation, by taking " G " to be $\Pi_{2 / 1}^{\mathrm{tpd}}, \quad$ " H " to be $\Pi_{T_{x}}, \quad$ " β " to be $\left.\alpha_{2 / 1}\right|_{\Pi_{2 / 1}^{\mathrm{tpd}}}$.

Therefore, we conclude that $\left.\alpha_{2 / 1}\right|_{\Pi_{2 / 1}^{\mathrm{tpd}}}=\mathrm{id}$, hence that $\left.\alpha_{2 / 1}\right|_{\Pi_{E_{x}}}=\mathrm{id}$.
This completes the proof of the affine case of Prop 1.
§4 Proof of Prop 1 - the proper case

$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G})$: an outer representation of PSC-type
$\widetilde{\mathcal{G}} \rightarrow \mathcal{G}:$ a universal covering
Π_{I} : the profinite gp obt'd by "pulling back the exact sequence"

$$
1 \longrightarrow \Pi_{\mathcal{G}} \xrightarrow{\text { conj. }} \operatorname{Aut}\left(\Pi_{\mathcal{G}}\right) \longrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right) \longrightarrow 1
$$

by the composite $I \xrightarrow{\rho_{I}} \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$
$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G}):$ an outer representation of PSC-type
$\widetilde{\mathcal{G}} \rightarrow \mathcal{G}:$ a universal covering
Π_{I} : the profinite gp obt'd by "pulling back the exact sequence"

$$
1 \longrightarrow \Pi_{\mathcal{G}} \xrightarrow{\text { conj. }} \operatorname{Aut}\left(\Pi_{\mathcal{G}}\right) \longrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right) \longrightarrow 1
$$

by the composite $I \xrightarrow{\rho_{I}} \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$

Definition
If $\tilde{z} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ or $\operatorname{Node}(\widetilde{\mathcal{G}})$, then we shall write

$$
I_{\tilde{z}} \stackrel{\text { def }}{=} Z_{\Pi_{I}}\left(\Pi_{\tilde{z}}\right) \subseteq D_{\tilde{z}} \stackrel{\text { def }}{=} N_{\Pi_{I}}\left(\Pi_{\tilde{z}}\right)
$$

Definition

$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G}):$ an outer representation of PSC-type
ρ_{I} is of NN-type $\stackrel{\text { def }}{\Leftrightarrow}$
(1) $I \cong \widehat{\mathbb{Z}}$.
(2) For every $\tilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$, the image of $I_{\tilde{v}} \hookrightarrow \Pi_{I} \rightarrow I$ is open.
(3) For every $\tilde{e} \in \operatorname{Node}(\widetilde{\mathcal{G}})$, the natural inclusions $I_{\tilde{v}_{1}}, I_{\tilde{v}_{2}} \subseteq I_{\tilde{e}}$ - where \tilde{e} abuts to $\tilde{v}_{1}, \tilde{v}_{2} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ - induces an open injection $I_{\tilde{v}_{1}} \times I_{\tilde{v}_{2}} \hookrightarrow I_{\tilde{e}}$.

Theorem 3 (CmbGC for outer rep'ns of NN-type)
$\rho_{I}: I \rightarrow \operatorname{Aut}(\mathcal{G}), \rho_{J}: J \rightarrow \operatorname{Aut}(\mathcal{H})$: outer rep'ns of PSC-type $\alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{H}}:$ an isom. which fits into a comm. diag.

$$
\begin{aligned}
& I \xrightarrow{\rho_{I}} \operatorname{Aut}(\mathcal{G}) \longleftrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right) \\
& \downarrow^{2} \\
& J \xrightarrow{\downarrow^{2}} \operatorname{Out}(\alpha) \\
& J \xrightarrow{\rho_{J}} \operatorname{Aut}(\mathcal{H}) \longleftrightarrow \operatorname{Out}\left(\Pi_{\mathcal{H}}\right)
\end{aligned}
$$

- where $I \xrightarrow{\sim} J$ is an isomorphism. Suppose that
(i) ρ_{I}, ρ_{J} are of NN-type.
(ii) $\operatorname{Cusp}(\mathcal{G}) \neq \emptyset$ and α is group-theoretically cuspidal.

Then α is graphic.

