# The injectivity portion of combinatorial cuspidalization for FC-admissible outer automorphisms

Arata Minamide

RIMS, Kyoto University

July 6, 2021

## $\S1$ Introduction

- K: an NF or an MLF  $\hookrightarrow \overline{K}$ : an alg closure of K  $G_K \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{K}/K)$
- (g,r): a pair of integers  $\geq 0$  s.t. 2g-2+r>0

## $\S1$ Introduction

- $\begin{array}{rcl} K: \mbox{ an NF or an MLF } \hookrightarrow \ \overline{K}: \mbox{ an alg closure of } K\\ G_K \ \stackrel{\rm def}{=} \ {\rm Gal}(\overline{K}/K) \end{array}$
- (g,r): a pair of integers  $\geq 0$  s.t. 2g-2+r>0
- C: a hyperbolic curve \_K of type (g,r) (g: the genus, r: the  $\sharp$  of cusps)  $\pi_1((-))$ : the étale  $\pi_1$  of (-)

Recall: The homotopy ext seq

$$1 \longrightarrow \pi_1(C \times_K \overline{K}) \longrightarrow \pi_1(C) \longrightarrow G_K \longrightarrow 1$$

induces an outer representation

$$\rho: G_K \to \operatorname{Out}(\pi_1(C \times_K \overline{K})).$$

Today,

Today,

Theorem 1 (Hoshi-Mochizuki) For any (g,r),  $\rho$  is injective.

Today,

Theorem 1 (Hoshi-Mochizuki) For any (g, r),  $\rho$  is injective.

Method: combinatorial anabelian geometry

Today,

Theorem 1 (Hoshi-Mochizuki) For any (g,r),  $\rho$  is injective.

## Method: combinatorial anabelian geometry

• First, Mochizuki gave an alternative proof of Fact from the point of view of combinatorial anabelian geometry (cf. [CmbCsp]).

Today,

Theorem 1 (Hoshi-Mochizuki) For any (g, r),  $\rho$  is injective.

# Method: combinatorial anabelian geometry

- First, Mochizuki gave an alternative proof of Fact from the point of view of combinatorial anabelian geometry (cf. [CmbCsp]).
- Then Hoshi-Mochizuki proved Theorem 1 (cf. [NodNon]).

We know the injectivity of  $G_K \to \operatorname{Out}(\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\})$  (due to Belyĭ). We want to show that  $G_K \to \operatorname{Out}(\pi_1(C_{\overline{K}}))$  for any C. However,

$$\mathbb{P}^{1}_{\overline{K}} \setminus \{0, 1, \infty\} \stackrel{?}{\cdots} C_{\overline{K}}$$

We know the injectivity of  $G_K \to \operatorname{Out}(\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\})$  (due to Belyĭ). We want to show that  $G_K \to \operatorname{Out}(\pi_1(C_{\overline{K}}))$  for any C. However,

$$\mathbb{P}^{1}_{\overline{K}} \setminus \{0, 1, \infty\} \stackrel{?}{\cdots} C_{\overline{K}}$$

<u>Observe</u>:  $\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\}$  " $\subseteq$ " the 3rd conf. space  $(C_{\overline{K}})_3$  of  $C_{\overline{K}}$ .  $\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\} \cdots (C_{\overline{K}})_3 \cdots C_{\overline{K}}$ 

We know the injectivity of  $G_K \to \operatorname{Out}(\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\})$  (due to Belyĭ). We want to show that  $G_K \to \operatorname{Out}(\pi_1(C_{\overline{K}}))$  for any C. However,

$$\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\} \stackrel{?}{\cdots} C_{\overline{K}}$$

<u>Observe</u>:  $\mathbb{P}_{\overline{K}}^1 \setminus \{0, 1, \infty\}$  " $\subseteq$ " the 3rd conf. space  $(C_{\overline{K}})_3$  of  $C_{\overline{K}}$ .  $\mathbb{P}_{\overline{K}}^1 \setminus \{0, 1, \infty\} \cdots (C_{\overline{K}})_3 \cdots C_{\overline{K}}$ 

On the other hand,

$$\operatorname{Out}(\pi_1((C_{\overline{K}})_3)) \stackrel{?}{\cdots} \operatorname{Out}(\pi_1((C_{\overline{K}})_2)) \stackrel{?}{\cdots} \operatorname{Out}(\pi_1(C_{\overline{K}}))$$

We know the injectivity of  $G_K \to \operatorname{Out}(\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\})$  (due to Belyĭ). We want to show that  $G_K \to \operatorname{Out}(\pi_1(C_{\overline{K}}))$  for any C. However,

$$\mathbb{P}^{1}_{\overline{K}} \setminus \{0, 1, \infty\} \stackrel{?}{\cdots} C_{\overline{K}}$$

<u>Observe</u>:  $\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\}$  " $\subseteq$ " the 3rd conf. space  $(C_{\overline{K}})_3$  of  $C_{\overline{K}}$ .  $\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\} \cdots (C_{\overline{K}})_3 \cdots C_{\overline{K}}$ 

On the other hand,

$$\operatorname{Out}(\pi_1((C_{\overline{K}})_3)) \stackrel{?}{\cdots} \operatorname{Out}(\pi_1((C_{\overline{K}})_2)) \stackrel{?}{\cdots} \operatorname{Out}(\pi_1(C_{\overline{K}}))$$

 $\implies$  We need to consider a certain subgp  $\operatorname{Out}^{\operatorname{FC}}(\pi_1((C_{\overline{K}})_n)).$ 

- k: an alg closed field of char 0
- X: a hyperbolic curve<sub>/k</sub> of type (g, r)

 $X_n \ \stackrel{\mathrm{def}}{=} \ \{(x_1, \cdots, x_n) \in X^n \ | \ x_i \neq x_j \ \text{ if } \ i \neq j \ \} \ \text{ (the $n$-th conf. sp)}$ 

- k: an alg closed field of char 0
- X: a hyperbolic curve<sub>/k</sub> of type (g, r)

 $X_n \stackrel{\text{def}}{=} \{(x_1, \cdots, x_n) \in X^n \mid x_i \neq x_j \text{ if } i \neq j \} \text{ (the $n$-th conf. sp)}$ 

In particular, the projections obtained by forgetting the last factors

$$X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_2 \rightarrow X$$

induce a sequence of (outer) surjections

$$\Pi_n \stackrel{\text{def}}{=} \pi_1(X_n) \twoheadrightarrow \Pi_{n-1} \twoheadrightarrow \cdots \twoheadrightarrow \Pi_2 \twoheadrightarrow \Pi_1.$$

- k: an alg closed field of char 0
- X: a hyperbolic curve<sub>/k</sub> of type (g, r)

 $X_n \stackrel{\text{def}}{=} \{(x_1, \cdots, x_n) \in X^n \mid x_i \neq x_j \text{ if } i \neq j \} \text{ (the n-th conf. sp)}$ 

In particular, the projections obtained by forgetting the last factors

$$X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_2 \rightarrow X$$

induce a sequence of (outer) surjections

$$\Pi_n \stackrel{\text{def}}{=} \pi_1(X_n) \twoheadrightarrow \Pi_{n-1} \twoheadrightarrow \cdots \twoheadrightarrow \Pi_2 \twoheadrightarrow \Pi_1.$$

Write  $K_m \stackrel{\text{def}}{=} \operatorname{Ker}(\Pi_n \twoheadrightarrow \Pi_m)$ ,  $\Pi_0 \stackrel{\text{def}}{=} \{1\}$ . Then we have  $\{1\} = K_n \subseteq K_{n-1} \subseteq \cdots \subseteq K_1 \subseteq K_0 = \Pi_n$ .



<u>Note</u>: We have the following commutative diagram



— where Y is a hyperbolic curve of type (g, r + m).

#### Definition

 $\alpha \in \operatorname{Aut}(\Pi_n)$  is F-admissible  $\stackrel{\text{def}}{\Leftrightarrow} \alpha(F) = F$  for every fiber subgroup  $F \subseteq \Pi_n$  (i.e., the kernel of  $\Pi_n \twoheadrightarrow \Pi_{n'}$  which arises from some projection  $X_n \to X_{n'}$ ).

#### Definition

 $\alpha \in \operatorname{Aut}(\Pi_n)$  is F-admissible  $\stackrel{\text{def}}{\Leftrightarrow} \alpha(F) = F$  for every fiber subgroup  $F \subseteq \Pi_n$  (i.e., the kernel of  $\Pi_n \twoheadrightarrow \Pi_{n'}$  which arises from some projection  $X_n \to X_{n'}$ ).

 $\alpha \in \operatorname{Aut}(\Pi_n)$  is C-admissible  $\stackrel{\mathsf{def}}{\Leftrightarrow}$ 

(i) 
$$\alpha(K_m) = K_m \ (0 \le m \le n);$$

(ii)  $\alpha: K_m/K_{m+1} \xrightarrow{\sim} K_m/K_{m+1}$  induces a bijection between the set of cuspidal inertia subgps  $\subseteq K_m/K_{m+1}$ .

#### Definition

 $\alpha \in \operatorname{Aut}(\Pi_n)$  is F-admissible  $\stackrel{\text{def}}{\Leftrightarrow} \alpha(F) = F$  for every fiber subgroup  $F \subseteq \Pi_n$  (i.e., the kernel of  $\Pi_n \twoheadrightarrow \Pi_{n'}$  which arises from some projection  $X_n \to X_{n'}$ ).

 $\alpha \in \operatorname{Aut}(\Pi_n)$  is C-admissible  $\stackrel{\mathsf{def}}{\Leftrightarrow}$ 

(i) 
$$\alpha(K_m) = K_m \ (0 \le m \le n);$$

(ii)  $\alpha: K_m/K_{m+1} \xrightarrow{\sim} K_m/K_{m+1}$  induces a bijection between the set of cuspidal inertia subgps  $\subseteq K_m/K_{m+1}$ .

 $\alpha \in \operatorname{Aut}(\Pi_n)$  is FC-admissible  $\stackrel{\text{def}}{\Leftrightarrow} \alpha$  is F-admissible and C-admissible.

<u>Observe</u>:  $X_{n+1} \to X_n$  "forgetting the last factor" induces  $\phi_n : \operatorname{Out}^{\operatorname{FC}}(\Pi_{n+1}) \to \operatorname{Out}^{\operatorname{FC}}(\Pi_n).$ 

<u>Observe</u>:  $X_{n+1} \to X_n$  "forgetting the last factor" induces  $\phi_n : \operatorname{Out}^{\operatorname{FC}}(\Pi_{n+1}) \to \operatorname{Out}^{\operatorname{FC}}(\Pi_n).$ 

Theorem 2 (Hoshi-Mochizuki)

 $\phi_n$  is injective for  $n \ge 1$ .

<u>Observe</u>:  $X_{n+1} \to X_n$  "forgetting the last factor" induces  $\phi_n : \operatorname{Out}^{\operatorname{FC}}(\Pi_{n+1}) \to \operatorname{Out}^{\operatorname{FC}}(\Pi_n).$ 

Theorem 2 (Hoshi-Mochizuki)  $\phi_n$  is injective for  $n \ge 1$ .

<u>Remark</u>:

- $\phi_n$  is bijective for  $n \ge 4$ .
- $\exists$  pro-*l* version of  $\phi_n$  and similar results are known.

 There are related works due to Ihara, Kaneko, Nakamura, Takao, Ueno, Harbater-Schneps, Tsunogai (cf., e.g., "Out<sup>b</sup>").  There are related works due to Ihara, Kaneko, Nakamura, Takao, Ueno, Harbater-Schneps, Tsunogai (cf., e.g., "Out<sup>b</sup>").

Theorem 2  $\implies$  Theorem 1

Let  $X \stackrel{\text{def}}{=} C \times_K \overline{K}, \ k \stackrel{\text{def}}{=} \overline{K}$ ( $\implies \pi_1(C \times_K \overline{K}) = \pi_1(X) = \Pi_1$ )  There are related works due to Ihara, Kaneko, Nakamura, Takao, Ueno, Harbater-Schneps, Tsunogai (cf., e.g., "Out<sup>b</sup>").

Theorem 2  $\implies$  Theorem 1

Let 
$$X \stackrel{\text{def}}{=} C \times_K \overline{K}$$
,  $k \stackrel{\text{def}}{=} \overline{K}$   
( $\implies \pi_1(C \times_K \overline{K}) = \pi_1(X) = \Pi_1$ )

<u>Note</u>: The outer rep'n  $\rho: G_K \to Out(\Pi_1)$  factors as

$$G_K \rightarrow \operatorname{Out}^{\operatorname{FC}}(\Pi_1) \hookrightarrow \operatorname{Out}(\Pi_1).$$

Thus, to show that  $\rho$  is injective, it suffices to show that

$$G_K \rightarrow \text{Out}^{\text{FC}}(\Pi_1)$$
 is injective.

This follows from the commutativity of the diagram

$$\begin{array}{ccc} G_K & \longrightarrow & \operatorname{Out}^{\operatorname{FC}}(\Pi_1) \\ & & & & & & \\ & & & & & \\ G_K & \longrightarrow & \operatorname{Out}^{\operatorname{FC}}(\Pi_2) \\ & & & & & \\ & & & & & \\ G_K & \longrightarrow & \operatorname{Out}^{\operatorname{FC}}(\Pi_3) & \stackrel{\exists}{- \longrightarrow} & \operatorname{Out}(\pi_1(\mathbb{P}^1_{\overline{K}} \setminus \{0, 1, \infty\})) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$$

This follows from the commutativity of the diagram



Today, for simplicity, we consider the proof of the injectivity of  $\phi_1$ .

 $\implies$  It suffices to verify the following proposition:

Proposition 1 Write  $\operatorname{Aut}^{\operatorname{IFC}}(\Pi_2) \stackrel{\text{def}}{=} \left\{ \alpha \in \operatorname{Aut}^{\operatorname{FC}}(\Pi_2) \middle| \begin{array}{c} \alpha \stackrel{p_1}{\longrightarrow} \Pi_1 \stackrel{p_1}{\longrightarrow} \alpha_1 = \operatorname{id} \\ \alpha \stackrel{p_2}{\longrightarrow} \Pi_1 \stackrel{p_2}{\longrightarrow} \alpha_2 = \operatorname{id} \end{array} \right\},$ 

 $\Xi \stackrel{\text{def}}{=} \operatorname{Ker}(p_1) \cap \operatorname{Ker}(p_2) \ (\subseteq \Pi_2).$ 

Proposition 1

Write

$$\operatorname{Aut}^{\operatorname{IFC}}(\Pi_2) \stackrel{\text{def}}{=} \left\{ \alpha \in \operatorname{Aut}^{\operatorname{FC}}(\Pi_2) \middle| \begin{array}{c} \alpha \stackrel{p_1}{\longrightarrow} \Pi_1 \stackrel{p_1}{\longrightarrow} \alpha_1 = \operatorname{id} \\ \alpha \stackrel{p_1}{\longrightarrow} \Pi_2 \stackrel{p_1}{\longrightarrow} \Pi_1 \stackrel{q_2}{\longrightarrow} \Pi_1 \stackrel{q_3}{\longrightarrow} \alpha_2 = \operatorname{id} \end{array} \right\},$$

 $\Xi \stackrel{\text{def}}{=} \operatorname{Ker}(p_1) \cap \operatorname{Ker}(p_2) \ (\subseteq \Pi_2).$ 

Then the injection (cf. the center-freeness of  $\Pi_2$ )

$$\Xi \stackrel{\text{conj.}}{\hookrightarrow} \operatorname{Aut}^{\operatorname{IFC}}(\Pi_2)$$

is bijective.

# Proposition 1 $\implies$ Theorem 2 $(\phi_1 : \operatorname{Out}^{\operatorname{FC}}(\Pi_2) \hookrightarrow \operatorname{Out}^{\operatorname{FC}}(\Pi_1))$

Let  $\alpha \in \operatorname{Aut}^{\operatorname{FC}}(\Pi_2)$  s.t.



# Proposition 1 $\implies$ Theorem 2 $(\phi_1 : \operatorname{Out}^{\operatorname{FC}}(\Pi_2) \hookrightarrow \operatorname{Out}^{\operatorname{FC}}(\Pi_1))$

Let  $\alpha \in \operatorname{Aut}^{\operatorname{FC}}(\Pi_2)$  s.t.

$$\alpha \overset{p_1}{\frown} \Pi_1 \overset{q_1}{\frown} \alpha_1 = \operatorname{Inn}(g_1)$$

<u>Observe</u>: Let  $\mathbb{D} \subseteq \Pi_2$  be a decomposition group assoc. to the diagonal  $\subseteq X \times_k X$ . Then it holds that

$$\alpha(\mathbb{D}) = \pi \cdot \mathbb{D} \cdot \pi^{-1} \ (\pi \in \Pi_2).$$

(cf. our assumption that  $\alpha$  is FC-admissible).



we conclude that

$$\alpha_2 = \text{Inn}(g_2) \ (g_2 \in \Pi_1).$$



we conclude that

$$\alpha_2 = \text{Inn}(g_2) \ (g_2 \in \Pi_1).$$

Let  $g \in \Pi_2$  s.t.  $p_1(g) = g_1$  and  $p_2(g) = g_2$ .



we conclude that

$$\alpha_2 = \text{Inn}(g_2) \ (g_2 \in \Pi_1).$$

Let 
$$g \in \Pi_2$$
 s.t.  $p_1(g) = g_1$  and  $p_2(g) = g_2$ .  
 $\implies \operatorname{Inn}(g)^{-1} \circ \alpha \in \operatorname{Aut}^{\operatorname{IFC}}(\Pi_2) \stackrel{\sim}{\leftarrow} \Xi$ 



we conclude that

$$\alpha_2 = \text{Inn}(g_2) \ (g_2 \in \Pi_1).$$

Let 
$$g \in \Pi_2$$
 s.t.  $p_1(g) = g_1$  and  $p_2(g) = g_2$ .  
 $\implies \operatorname{Inn}(g)^{-1} \circ \alpha \in \operatorname{Aut}^{\operatorname{IFC}}(\Pi_2) \stackrel{\sim}{\leftarrow} \Xi$   
 $\implies \alpha \in \operatorname{Inn}(\Pi_2)$ 

Thus, since



we conclude that

$$\alpha_2 = \text{Inn}(g_2) \ (g_2 \in \Pi_1).$$

Let 
$$g \in \Pi_2$$
 s.t.  $p_1(g) = g_1$  and  $p_2(g) = g_2$ .  
 $\implies \operatorname{Inn}(g)^{-1} \circ \alpha \in \operatorname{Aut}^{\operatorname{IFC}}(\Pi_2) \stackrel{\sim}{\leftarrow} \Xi$   
 $\implies \alpha \in \operatorname{Inn}(\Pi_2)$ 

Proof of Proposition 1 ... an application of CmbGC!

### $\S2$ Proof of Prop1 — the tripod case

Suppose that  $X = \mathbb{P}^1_k \setminus \{a, b, c\}$ .

Write  $\Pi_{2/1} \stackrel{\text{def}}{=} \operatorname{Ker}(\Pi_2 \stackrel{p_1}{\twoheadrightarrow} \Pi_1)$ . In particular, we have

$$1 \longrightarrow \Pi_{2/1} \longrightarrow \Pi_2 \xrightarrow{p_1} \Pi_1 \longrightarrow 1.$$

Let  $\alpha \in Aut^{IFC}(\Pi_2)$ . We want to show that  $\alpha$  is a  $\Xi$ -inner.

### $\S2$ Proof of Prop1 — the tripod case

Suppose that  $X = \mathbb{P}^1_k \setminus \{a, b, c\}$ .

Write  $\Pi_{2/1} \stackrel{\text{def}}{=} \operatorname{Ker}(\Pi_2 \stackrel{p_1}{\twoheadrightarrow} \Pi_1)$ . In particular, we have

$$1 \longrightarrow \Pi_{2/1} \longrightarrow \Pi_2 \xrightarrow{p_1} \Pi_1 \longrightarrow 1.$$

Let  $\alpha \in Aut^{IFC}(\Pi_2)$ . We want to show that  $\alpha$  is a  $\Xi$ -inner.

First, we consider the geom. generic fiber of  $pr_1: X_2 \to X$ .

$$\overline{\mathbb{I}}_{2_{1}} \cong \overline{\mathcal{T}}_{1} \left( \begin{array}{c} \circ & \circ \\ \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{array} \right)^{1}$$
 here cusp

#### Then since

•  $p_2: \Pi_2 \twoheadrightarrow \Pi_1$  is induced by the open immersion



• 
$$\alpha_2 = \mathrm{id} \ (\mathrm{cf.} \ \alpha \in \mathrm{Aut}^{\mathrm{IFC}}(\Pi_2)),$$

•  $\alpha$  is C-admissible,

we conclude that  $\alpha$  induces the identity permutation on the set of conjugacy classes of cuspidal inertia groups of  $\Pi_{2/1}$ .

$$\implies \alpha(I_a) = \xi \cdot I_a \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1})$$

$$\implies \alpha(I_a) = \xi \cdot I_a \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1})$$

 $\implies p_2(I_a) = p_2(\alpha(I_a)) = p_2(\xi) \cdot p_2(I_a) \cdot p_2(\xi)^{-1}$  (cf.  $\alpha_2 = id$ )

$$\implies \alpha(I_a) = \xi \cdot I_a \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1})$$
$$\implies p_2(I_a) = p_2(\alpha(I_a)) = p_2(\xi) \cdot p_2(I_a) \cdot p_2(\xi)^{-1} \quad (\text{cf. } \alpha_2 = \text{id})$$
$$\implies p_2(\xi) \in N_{\Pi_1}(p_2(I_a)) = p_2(I_a)$$

Fix: a cuspidal inertia subgroup 
$$I_a \subseteq \Pi_{2/1}$$
 assoc. to  $a$ .  
 $\implies \alpha(I_a) = \xi \cdot I_a \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1})$   
 $\implies p_2(I_a) = p_2(\alpha(I_a)) = p_2(\xi) \cdot p_2(I_a) \cdot p_2(\xi)^{-1} \quad (cf. \ \alpha_2 = id)$   
 $\implies p_2(\xi) \in N_{\Pi_1}(p_2(I_a)) = p_2(I_a)$ 

Thus, replacing  $\xi$  by a suitable element, we may assume WLOG that  $\xi \ \in \ \Xi.$ 

Fix: a cuspidal inertia subgroup 
$$I_a \subseteq \Pi_{2/1}$$
 assoc. to  $a$ .  
 $\implies \alpha(I_a) = \xi \cdot I_a \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1})$ 

$$\implies p_2(I_a) = p_2(\alpha(I_a)) = p_2(\xi) \cdot p_2(I_a) \cdot p_2(\xi)^{-1} \quad (cf. \ \alpha_2 = id)$$
$$\implies p_2(\xi) \in N_{\Pi_1}(p_2(I_a)) = p_2(I_a)$$

Thus, replacing  $\xi$  by a suitable element, we may assume WLOG that

$$\xi \in \Xi$$
.

Therefore, replacing  $\alpha$  by  $\operatorname{Inn}(\xi^{-1}) \circ \alpha$ , we may assume WLOG that

 $\alpha(I_a) = I_a.$ 

Under this (additional) assumption, let us prove  $|\alpha = id|$ .

### Step 1 (group-theoretic argument)

Observe: We have an exact sequence

$$1 \longrightarrow \Pi_{2/1} \longrightarrow \Pi_2 \xrightarrow{p_1} \Pi_1 \longrightarrow 1.$$

Moreover, it holds that  $\alpha_1 = id$  (cf.  $\alpha \in Aut^{IFC}(\Pi_2)$ ). Thus, since  $\Pi_{2/1}$  is center-free, to verify  $\alpha = id$ , it suffices to show that

$$\alpha_{2/1} \stackrel{\text{def}}{=} \alpha|_{\Pi_{2/1}} = \text{id.}$$

### Step 1 (group-theoretic argument)

Observe: We have an exact sequence

$$1 \longrightarrow \Pi_{2/1} \longrightarrow \Pi_2 \xrightarrow{p_1} \Pi_1 \longrightarrow 1.$$

Moreover, it holds that  $\alpha_1 = id$  (cf.  $\alpha \in Aut^{IFC}(\Pi_2)$ ). Thus, since  $\Pi_{2/1}$  is center-free, to verify  $\alpha = id$ , it suffices to show that

$$\alpha_{2/1} \stackrel{\text{def}}{=} \alpha|_{\Pi_{2/1}} = \text{id.}$$

## Step 2 (application of CmbGC)

$$Z^{\log}$$
: a "natural" smooth log curve\_{/k} assoc. to X $Z_2^{\log}$ : the 2nd log configuration space of  $Z^{\log}$ 





Next, we consider the fiber of  $\operatorname{pr}_1: Z_2^{\log} \to Z^{\log}$  over b.





Next, we consider the fiber of  $\operatorname{pr}_1: Z_2^{\log} \to Z^{\log}$  over b.



 $\Pi_{F_b} \subseteq \Pi_{2/1}$ : a unique (among its  $\Pi_{2/1}$ -cong.) verticial subgp assoc. to  $F_b$  which contains (the fixed)  $I_a$ 

Note: We have the following commutative diagram:

$$J_b \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1})$$
  
$$id \downarrow \wr \qquad \alpha_1 = id \downarrow \wr \qquad \operatorname{Out}(\alpha_{2/1}) \downarrow \wr$$
  
$$J_b \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1})$$

— where  $J_b \subseteq \Pi_1$  is a cuspidal inertia subgp assoc. to b.

<u>Note</u>: We have the following commutative diagram:

$$J_b \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1})$$
  
$$id \downarrow \wr \qquad \alpha_1 = id \downarrow \wr \qquad \operatorname{Out}(\alpha_{2/1}) \downarrow \wr$$
  
$$J_b \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1})$$

— where  $J_b \subseteq \Pi_1$  is a cuspidal inertia subgp assoc. to b.

Then since the composite  $J_b \hookrightarrow \Pi_1 \to \text{Out}(\Pi_{2/1})$  is of IPSC-type, it follows from CmbGC that  $\alpha_{2/1}$  is graphic, hence that

 $\alpha_{2/1}(\Pi_{F_b})$  is a verticial subgp  $\supseteq \alpha_{2/1}(I_a) = I_a$ .

Arata Minamide (RIMS, Kyoto University)

<u>Note</u>: We have the following commutative diagram:

$$J_b \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1})$$
  
$$id \downarrow \wr \qquad \alpha_1 = id \downarrow \wr \qquad \operatorname{Out}(\alpha_{2/1}) \downarrow \wr$$
  
$$J_b \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1})$$

— where  $J_b \subseteq \Pi_1$  is a cuspidal inertia subgp assoc. to b.

Then since the composite  $J_b \hookrightarrow \Pi_1 \to \text{Out}(\Pi_{2/1})$  is of IPSC-type, it follows from CmbGC that  $\alpha_{2/1}$  is graphic, hence that

$$\alpha_{2/1}(\prod_{F_b})$$
 is a verticial subgp  $\supseteq \alpha_{2/1}(I_a) = I_a$ .

 $\implies \alpha_{2/1}(\Pi_{F_b}) = \Pi_{F_b}$  (cf. the "uniqueness" of  $\Pi_{F_b}$ )

Next, we consider the fiber of  $\operatorname{pr}_1: Z_2^{\log} \to Z^{\log}$  over c.



Next, we consider the fiber of  $\operatorname{pr}_1: Z_2^{\log} \to Z^{\log}$  over c.



 $\Pi_{F_c} \subseteq \Pi_{2/1}$ : a unique (among its  $\Pi_{2/1}$ -cong.) verticial subgp assoc. to  $F_c$  which contains (the fixed)  $I_a$ 

Next, we consider the fiber of  $\operatorname{pr}_1: Z_2^{\log} \to Z^{\log}$  over c.



 $\Pi_{F_c} \subseteq \Pi_{2/1}$ : a unique (among its  $\Pi_{2/1}$ -cong.) verticial subgp assoc. to  $F_c$  which contains (the fixed)  $I_a$ 

 $\implies \alpha_{2/1}(\Pi_{F_c}) = \Pi_{F_c}$ 

<u>Note</u>:  $p_2 : \Pi_2 \twoheadrightarrow \Pi_1$  induces  $\Pi_{F_b} \xrightarrow{\sim} \Pi_1$  and  $\Pi_{F_c} \xrightarrow{\sim} \Pi_1$ .  $\implies \alpha_{2/1}|_{\Pi_{F_b}} = \text{id}, \quad \alpha_{2/1}|_{\Pi_{F_c}} = \text{id} \quad (\text{cf. } \alpha_2 = \text{id})$  <u>Note</u>:  $p_2 : \Pi_2 \twoheadrightarrow \Pi_1$  induces  $\Pi_{F_b} \xrightarrow{\sim} \Pi_1$  and  $\Pi_{F_c} \xrightarrow{\sim} \Pi_1$ .  $\implies \alpha_{2/1}|_{\Pi_{F_b}} = \text{id}, \quad \alpha_{2/1}|_{\Pi_{F_c}} = \text{id} \quad (\text{cf. } \alpha_2 = \text{id})$ 

# Step 3 (topological argument)

Since

$$\Pi_{2/1} \cong \underrightarrow{\lim}(\Pi_{F_b} \longleftrightarrow I_a \hookrightarrow \Pi_{F_c})$$

(cf. van Kampen), we conclude that  $\alpha_{2/1} = \mathrm{id}.$ 

This completes the proof of the tripod case of Prop 1.



#### $\S3$ Proof of Prop1 — the affine case



Suppose that X is affine. For simplicity, we assume that  $r \ge 2$ . Let  $\alpha \in \operatorname{Aut}^{\operatorname{IFC}}(\Pi_2)$ . We want to show that  $\alpha$  is a  $\Xi$ -inner. Suppose that X is affine. For simplicity, we assume that  $r \ge 2$ . Let  $\alpha \in \operatorname{Aut}^{\operatorname{IFC}}(\Pi_2)$ . We want to show that  $\alpha$  is a  $\Xi$ -inner.

# Step 1 (application of CmbGC)

 $Z^{\log}$ : a "natural" smooth log curve<sub>/k</sub> assoc. to X  $Z_2^{\log}$ : the 2nd log configuration space of  $Z^{\log}$ 



Suppose that X is affine. For simplicity, we assume that  $r \ge 2$ . Let  $\alpha \in \operatorname{Aut}^{\operatorname{IFC}}(\Pi_2)$ . We want to show that  $\alpha$  is a  $\Xi$ -inner.

# Step 1 (application of CmbGC)

 $Z^{\log}$ : a "natural" smooth log curve<sub>/k</sub> assoc. to X  $Z_2^{\log}$ : the 2nd log configuration space of  $Z^{\log}$ 



Let us consider the fiber of  $\operatorname{pr}_1: Z_2^{\log} \to Z^{\log}$  over x.





- <u>Fix</u>: a (nodal) edge-like subgp  $\Pi_{\nu_x} \subseteq \Pi_{2/1}$  assoc. to  $\nu_x$ .
- $\Pi_{E_x}, \ \Pi_{F_x} \subseteq \Pi_{2/1}$ : two verticial subgp assoc. to  $E_x$ ,  $F_x$ which contains (the fixed)  $\Pi_{\nu_x}$



<u>Fix</u>: a (nodal) edge-like subgp  $\Pi_{\nu_x} \subseteq \Pi_{2/1}$  assoc. to  $\nu_x$ .

 $\Pi_{E_x}, \ \Pi_{F_x} \subseteq \Pi_{2/1}$ : two verticial subgp assoc. to  $E_x$ ,  $F_x$ which contains (the fixed)  $\Pi_{\nu_x}$ 

<u>Note</u>: We have the following commutative diagram:

$$J_x \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1})$$
  
$$id \downarrow \wr \qquad \alpha_1 = id \downarrow \wr \qquad \operatorname{Out}(\alpha_{2/1}) \downarrow \wr$$
  
$$J_x \longleftrightarrow \Pi_1 \longrightarrow \operatorname{Out}(\Pi_{2/1}).$$

Then it follows from CmbGC that  $\alpha_{2/1}$  is graphic, hence that  $\alpha(\Pi_{\nu_x}) = \xi \cdot \Pi_{\nu_x} \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1}).$  Then it follows from CmbGC that  $\alpha_{2/1}$  is graphic, hence that  $\alpha(\Pi_{\nu_x}) = \xi \cdot \Pi_{\nu_x} \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1}).$   $\implies p_2(\Pi_{\nu_x}) = p_2(\alpha(\Pi_{\nu_x})) = p_2(\xi) \cdot p_2(\Pi_{\nu_x}) \cdot p_2(\xi)^{-1} \quad (\text{cf. } \alpha_2 = \text{id})$  Then it follows from CmbGC that  $\alpha_{2/1}$  is graphic, hence that

$$\alpha(\Pi_{\nu_x}) = \xi \cdot \Pi_{\nu_x} \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1}).$$

 $\implies p_2(\Pi_{\nu_x}) = p_2(\alpha(\Pi_{\nu_x})) = p_2(\xi) \cdot p_2(\Pi_{\nu_x}) \cdot p_2(\xi)^{-1} \quad (cf. \ \alpha_2 = id)$  $\implies p_2(\xi) \in N_{\Pi_1}(p_2(\Pi_{\nu_x})) = p_2(\Pi_{\nu_x})$ 

Then it follows from CmbGC that  $\alpha_{2/1}$  is graphic, hence that

$$\alpha(\Pi_{\nu_x}) = \xi \cdot \Pi_{\nu_x} \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1}).$$

 $\implies p_2(\Pi_{\nu_x}) = p_2(\alpha(\Pi_{\nu_x})) = p_2(\xi) \cdot p_2(\Pi_{\nu_x}) \cdot p_2(\xi)^{-1} \quad (\text{cf. } \alpha_2 = \text{id})$  $\implies p_2(\xi) \in N_{\Pi_1}(p_2(\Pi_{\nu_x})) = p_2(\Pi_{\nu_x})$ 

Thus, replacing  $\xi$  by a suitable element, we may assume WLOG that  $\xi \in \Xi.$ 

Then it follows from CmbGC that  $\alpha_{2/1}$  is graphic, hence that

$$\alpha(\Pi_{\nu_x}) = \xi \cdot \Pi_{\nu_x} \cdot \xi^{-1} \quad (\xi \in \Pi_{2/1}).$$

 $\implies p_2(\Pi_{\nu_x}) = p_2(\alpha(\Pi_{\nu_x})) = p_2(\xi) \cdot p_2(\Pi_{\nu_x}) \cdot p_2(\xi)^{-1} \quad (\text{cf. } \alpha_2 = \text{id})$  $\implies p_2(\xi) \in N_{\Pi_1}(p_2(\Pi_{\nu_x})) = p_2(\Pi_{\nu_x})$ 

Thus, replacing  $\xi$  by a suitable element, we may assume WLOG that

$$\xi \in \Xi$$
.

Therefore, replacing  $\alpha$  by  $Inn(\xi^{-1}) \circ \alpha$ , we may assume WLOG that

 $\alpha(\Pi_{\nu_x}) = \Pi_{\nu_x}.$ 

Under this (additional) assumption, let us prove  $\alpha = id$ .

Then since  $\alpha_{2/1}$  is graphic, we conclude that

 $\alpha_{2/1}(\Pi_{E_x})$ ,  $\alpha_{2/1}(\Pi_{F_x})$  are verticial subgp  $\supseteq \alpha_{2/1}(\Pi_{\nu_x}) = \Pi_{\nu_x}$ .

 $\implies \alpha_{2/1}(\Pi_{E_x}) = \Pi_{E_x}, \quad \alpha_{2/1}(\Pi_{F_x}) = \Pi_{F_x}$ 

Then since  $\alpha_{2/1}$  is graphic, we conclude that

 $\alpha_{2/1}(\Pi_{E_x}), \ \alpha_{2/1}(\Pi_{F_x})$  are verticial subgp  $\supseteq \alpha_{2/1}(\Pi_{\nu_x}) = \Pi_{\nu_x}.$ 

 $\implies \alpha_{2/1}(\Pi_{E_x}) = \Pi_{E_x}, \quad \alpha_{2/1}(\Pi_{F_x}) = \Pi_{F_x}$ 

### Step 2 (group-theoretic argument)

Observe: We have an exact sequence

$$1 \longrightarrow \Pi_{2/1} \longrightarrow \Pi_2 \xrightarrow{p_1} \Pi_1 \longrightarrow 1.$$

Moreover, it holds that  $\alpha_1 = id$  (cf.  $\alpha \in Aut^{IFC}(\Pi_2)$ ). Thus, since  $\Pi_{2/1}$  is center-free, to verify  $\alpha = id$ , it suffices to show that

$$\alpha_{2/1} \stackrel{\text{def}}{=} \alpha|_{\Pi_{2/1}} = \text{id.}$$

# Step 3 (topological argument)

<u>Note</u>:  $p_2: \Pi_2 \twoheadrightarrow \Pi_1$  induces  $\Pi_{F_x} \xrightarrow{\sim} \Pi_1$ .

$$\implies \alpha_{2/1}|_{\Pi_{F_x}} = \mathrm{id} (\mathrm{cf.} \ \alpha_2 = \mathrm{id})$$

## Step 3 (topological argument)

<u>Note</u>:  $p_2: \Pi_2 \twoheadrightarrow \Pi_1$  induces  $\Pi_{F_x} \xrightarrow{\sim} \Pi_1$ .

$$\implies \alpha_{2/1}|_{\Pi_{F_x}} = \mathrm{id} (\mathrm{cf.} \ \alpha_2 = \mathrm{id})$$

Then since

$$\Pi_{2/1} \cong \varinjlim(\Pi_{E_x} \leftrightarrow \Pi_{\nu_x} \hookrightarrow \Pi_{F_x})$$

(cf. van Kampen), to verify  $\alpha_{2/1} = id$ , it suffices to show that

$$\alpha_{2/1}|_{\Pi_{E_x}} = \text{id}.$$

To verify this, by applying

- deformation theory of stable log curves,
- specialization theorem of log étale fundamental groups,

we may replace " $Z^{\log}/k$ " by

$$W^{log} = \underbrace{(1, 1)}_{l=1} \underbrace{$$

 $W_2^{\log}$ : the 2nd log configuration space of  $W^{\log}$ 

Note: 
$$\Pi_n \xrightarrow{\sim} \operatorname{Ker}(\pi_1^{\log}(W_n^{\log}) \twoheadrightarrow \pi_1^{\log}(S^{\log})).$$

Let us consider the fiber of  $\operatorname{pr}_1: W_2^{\log} \to W^{\log}$  over x.



Let us consider the fiber of  $\operatorname{pr}_1: W_2^{\log} \to W^{\log}$  over x.



$$\implies \alpha_{2/1}|_{\Pi_{T_x}} = \operatorname{id} (\operatorname{cf.} \alpha_{2/1}|_{\Pi_{F_x}} = \operatorname{id})$$

Let us consider the fiber of  $\operatorname{pr}_1: W_2^{\log} \to W^{\log}$  over x.



$$\implies \alpha_{2/1}|_{\Pi_{T_x}} = \operatorname{id} (\operatorname{cf.} \alpha_{2/1}|_{\Pi_{F_x}} = \operatorname{id})$$

 $\begin{array}{l} T^{\mathrm{log}}\colon \text{ a ``natural'' smooth log curve}_{/S^{\mathrm{log}}} \text{ assoc. to } T \setminus \{ \mathrm{marked \ pts, node} \} \\ T_2^{\mathrm{log}}\colon \text{ the 2nd log configuration space of } Z^{\mathrm{log}} \\ \Pi_n^{\mathrm{tpd}} \stackrel{\mathrm{def}}{=} \mathrm{Ker}(\pi_1^{\mathrm{log}}(T_n^{\mathrm{log}}) \twoheadrightarrow \pi_1^{\mathrm{log}}(S^{\mathrm{log}})) \end{array}$ 

In particular, we have



In particular, we have

Then since  $\alpha_{2/1}(\Pi_{E_x}) = \Pi_{E_x}$ ,  $\alpha_{2/1}|_{\Pi_{T_x}} = \mathrm{id}$ , it holds that  $\alpha_{2/1}(\Pi_{2/1}^{\mathrm{tpd}}) = \Pi_{2/1}^{\mathrm{tpd}}$ 

(cf. van Kampen).

In particular, we have

$$1 \longrightarrow \Pi_{2/1} \longrightarrow \Pi_2 \xrightarrow{p_1} \Pi_1 \longrightarrow 1$$
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
$$1 \longrightarrow \Pi_{2/1}^{\text{tpd}} \longrightarrow \Pi_2^{\text{tpd}} \longrightarrow \Pi_1^{\text{tpd}} \longrightarrow 1.$$

Then since  $\alpha_{2/1}(\Pi_{E_x}) = \Pi_{E_x}$ ,  $\alpha_{2/1}|_{\Pi_{T_x}} = id$ , it holds that  $\alpha_{2/1}(\Pi_{2/1}^{tpd}) = \Pi_{2/1}^{tpd}$ 

(cf. van Kampen). Moreover, one verifies that  $\alpha_{2/1}|_{\Pi^{\mathrm{tpd}}_{2/1}}$  arises from

$$\exists \alpha^{\mathrm{tpd}} \in \mathrm{Aut}^{\mathrm{IFC}}(\Pi_2^{\mathrm{tpd}}) \stackrel{\sim}{\leftarrow} \Xi^{\mathrm{tpd}} \ (\subseteq \ \Pi_{2/1}^{\mathrm{tpd}})$$

(cf. §2). Thus, we conclude that  $\alpha_{2/1}|_{\Pi_{2/1}^{tpd}}$  is a  $\Pi_{2/1}^{tpd}$ -inner.

## Lemma 1

Let G be a profinite group,  $H \subseteq G$  a closed subgroup,  $\beta \in \text{Inn}(G)$  s.t.  $\beta|_H = \text{id.}$  Suppose that

- $N_G(H) = H;$
- H is center-free.

Then  $\beta = id$ .

#### Lemma 1

Let G be a profinite group,  $H \subseteq G$  a closed subgroup,  $\beta \in \text{Inn}(G)$  s.t.  $\beta|_H = \text{id.}$  Suppose that

- $N_G(H) = H;$
- H is center-free.

Then  $\beta = id$ .

We would like to apply this Lemma, to the present situation, by taking

"
$$G$$
" to be  $\Pi^{
m tpd}_{2/1}$ , " $H$ " to be  $\Pi_{T_x}$ , " $eta$ " to be  $lpha_{2/1}|_{\Pi^{
m tpd}_{2/1}}$ 

#### Lemma 1

Let G be a profinite group,  $H \subseteq G$  a closed subgroup,  $\beta \in \text{Inn}(G)$  s.t.  $\beta|_H = \text{id.}$  Suppose that

- $N_G(H) = H;$
- H is center-free.

Then  $\beta = id$ .

We would like to apply this Lemma, to the present situation, by taking

"
$$G$$
" to be  $\Pi^{ ext{tpd}}_{2/1}$ , " $H$ " to be  $\Pi_{T_x}$ , " $eta$ " to be  $lpha_{2/1}|_{\Pi^{ ext{tpd}}_{2/1}}$ 

Therefore, we conclude that  $\alpha_{2/1}|_{\Pi_{2/1}^{\text{tpd}}} = \text{id}$ , hence that  $\alpha_{2/1}|_{\Pi_{E_x}} = \text{id}$ .

This completes the proof of the affine case of Prop 1.

## $\S4$ Proof of Prop1 — the proper case



 $\rho_I: I \to \operatorname{Aut}(\mathcal{G})$ : an outer representation of PSC-type  $\widetilde{\mathcal{G}} \to \mathcal{G}$ : a universal covering

 $\Pi_I$ : the profinite gp obt'd by "pulling back the exact sequence"

$$1 \longrightarrow \Pi_{\mathcal{G}} \xrightarrow{\mathsf{conj.}} \operatorname{Aut}(\Pi_{\mathcal{G}}) \longrightarrow \operatorname{Out}(\Pi_{\mathcal{G}}) \longrightarrow 1$$

by the composite  $I \xrightarrow{\rho_I} \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}(\Pi_{\mathcal{G}})$ 

 $\rho_I: I \to \operatorname{Aut}(\mathcal{G})$ : an outer representation of PSC-type  $\widetilde{\mathcal{G}} \to \mathcal{G}$ : a universal covering

 $\Pi_I: \ \mbox{the profinite gp obt'd by "pulling back the exact sequence"}$ 

$$1 \longrightarrow \Pi_{\mathcal{G}} \xrightarrow{\mathsf{conj.}} \operatorname{Aut}(\Pi_{\mathcal{G}}) \longrightarrow \operatorname{Out}(\Pi_{\mathcal{G}}) \longrightarrow 1$$

by the composite  $I \xrightarrow{\rho_I} \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}(\Pi_{\mathcal{G}})$ 

#### Definition

If 
$$\tilde{z} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$$
 or  $\operatorname{Node}(\widetilde{\mathcal{G}})$ , then we shall write  
$$I_{\tilde{z}} \stackrel{\text{def}}{=} Z_{\Pi_{I}}(\Pi_{\tilde{z}}) \subseteq D_{\tilde{z}} \stackrel{\text{def}}{=} N_{\Pi_{I}}(\Pi_{\tilde{z}}).$$

#### Definition

 $\rho_I: I \to \operatorname{Aut}(\mathcal{G}):$  an outer representation of PSC-type

 $\rho_I$  is of NN-type  $\Leftrightarrow$ 

(1)  $I \cong \widehat{\mathbb{Z}}$ .

(2) For every  $\tilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ , the image of  $I_{\tilde{v}} \hookrightarrow \Pi_I \twoheadrightarrow I$  is open.

(3) For every  $\tilde{e} \in \operatorname{Node}(\widetilde{\mathcal{G}})$ , the natural inclusions  $I_{\tilde{v}_1}, I_{\tilde{v}_2} \subseteq I_{\tilde{e}}$ — where  $\tilde{e}$  abuts to  $\tilde{v}_1, \tilde{v}_2 \in \operatorname{Vert}(\widetilde{\mathcal{G}})$  — induces an open injection  $I_{\tilde{v}_1} \times I_{\tilde{v}_2} \hookrightarrow I_{\tilde{e}}$ . Theorem 3 (CmbGC for outer rep'ns of NN-type)  $\rho_I: I \to \operatorname{Aut}(\mathcal{G}), \ \rho_J: J \to \operatorname{Aut}(\mathcal{H}): \text{ outer rep'ns of PSC-type}$ 

 $\alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{H}}$ : an isom. which fits into a comm. diag.

$$I \xrightarrow{\rho_{I}} \operatorname{Aut}(\mathcal{G}) \longrightarrow \operatorname{Out}(\Pi_{\mathcal{G}})$$

$$\downarrow^{\wr} \qquad \qquad \qquad \downarrow^{\wr} \operatorname{Out}(\alpha)$$

$$J \xrightarrow{\rho_{J}} \operatorname{Aut}(\mathcal{H}) \longrightarrow \operatorname{Out}(\Pi_{\mathcal{H}})$$

— where  $I \xrightarrow{\sim} J$  is an isomorphism. Suppose that

(i)  $\rho_I$ ,  $\rho_J$  are of NN-type. (ii)  $\operatorname{Cusp}(\mathcal{G}) \neq \emptyset$  and  $\alpha$  is group-theoretically cuspidal.

Then  $\alpha$  is graphic.